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Abstract--A numerical model of inverse segregation in a vertically cast unidirectionally solidified alumi- 
num-copper binary alloy is presented. The model predicts the solute concentration distribution up the 
length of the casting. The model is validated on comparison with available analytical solutions. Initial 
comparisons with experiments show that the model predicts a non-physical region of positive segregation 
in the upper part of the casting. On accounting for microporosity formation, however, the model predictions 
show close agreement with experimental measurements. Application of the model also demonstrates the 

need to correctly account for microsegregation processes. 

INTRODUCTION 

Recently, there has been much activity in the modeling 
ofmacrosegregation [1-4] (the redistribution of solute 
phases during the solidification of an initially uniform 
melt of a multicomponent alloy). A commonly studied 
macrosegregation system is the solidification of a 
binary material 111-3], initially at a uniform con- 
centration, against a vertical isothermal wall. In this 
system, as the solidification proceeds, the solute is 
rejected and subsequently redistributed by solutal and 
thermally driven :natural convection flows. An alter- 
native macrosegregation system results from the 
unidirectional solidification of a binary alloy, e.g. 
aluminum-copper, cooled from below. If the solute 
phase is heavier than the solvent and the partition 
coefficient k0 < 1, then the system will be both ther- 
mally and solutally stable. During this solidification, 
the shrinkage that occurs as the solid + liquid mushy 
region forms establishes a flow of the inter-dendritic 
fluid towards the chill face. This flow redistributes 
the rejected solute phase and forms macrosegregation 
known as 'inverse segregation' [5-11]. A typical con- 
centration profile on complete solidification, shown in 
Fig. 1, is a positively segregated region in the vicinity 
of the chill, a 'steady-state' region in the mid-section 
of the ingot, and a negatively segregated region near 
the top of the ingot. 

The objective of the current paper is the devel- 
opment of an inverse segregation model, in an alumi- 
num-copper system, based on the fundamental heat 
and solutal transport equations. This work is related 
to the macrosegregation study reported by Diao and 
Tsai [12], who used two-dimensional transport equa- 
tions to describe inverse segregation during the initial 
stages of solidification. In the current study we include 
a number of additional and important features in the 
modeling. In particular : 

(1) the extent of the simulation is carried out to the 
completion of solidification ; 

(2) a full accounting of the density variations 
within the solid and liquid phases is used [13] ; 

(3) a treatment of the eutectic reaction [14], where 
the density change is greatest, is included ; 

(4) the effects of microporosity formation on the 
concentration distribution in the finally solidified cast- 
ing are studied ; and 

(5) a non-equilibrium treatment is invoked that 
allows for zero mass diffusion in the solid at the local 
scale (i.e. at the local scale a Scheil assumption is used, 
as opposed to an equilibrium lever rule assumption). 

INVERSE SEGREGATION 

Consider a dilute aluminum-copper alloy (a binary 
eutectic alloy), initially in the molten state, at the 
nominal concentration Co, contained in the insulated 
mold defined by 0 < x < Xb (see Fig. 1). At time t = 0, 
the temperature at the bottom face x = 0, is lowered 
and fixed at a temperature To < T, ut (Teut the eutectic 
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Fig. 1. Inverse segregation: a schematic of unidirectional 
solidification ; a typical concentration profile after complete 

solidification. 
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NOMENCLATURE 

cp specific heat [J kg -~ K -r] uj 
C concentration [mass%] 
[C] mixture concentration [mass%] x 
Cou, eutectic concentration [mass%] Xb 
Co nominal concentration of the alloy Xout 

[mass%] Xm 
D mass diffusion coefficient [m2 s-~] Xti p 

f f  friction factor 
F mass flow rate of liquid per unit area 

[kg s -l m -2] 
9 volume fraction 
9por volume fraction of porosity 
ham b heat transfer coefficient 

[J m-2 s I K - ,  ] 
k0 partition coefficient 
K thermal conductivity [J m-  1 s- r K-  l] 
L enthalpy of fusion [J kg-~] 
mr representative liquidus slope 

[K (mass%)-q 
S source term 
t time [s] 
At time step [s] 
T temperature [K] 
Tam b ambient temperature of the 

surroundings [K] 
Teu t eutectic temperature [K] 
Tf fusion temperature [K] 
T~ initial temperature [K] 
u system velocity in the casting direction 

[ms r] 

liquid velocity in the casting direction 
[m s -q  
coordinate in domain [m] 
length of the solution domain [m] 
position of the eutectic front [m] 
height of the mold [m] 
position of the dendrite tips [m]. 

Greek symbols 
p mass density of the alloy 
[p] mixture density of the alloy 
[pC] mixture solute density 
[PHI mixture enthalpy. 

Subscripts 
AI aluminum 
b boundary of the solution domain 
Cu copper 
cut eutectic 
por porosity 
P, W, E position of the node point 
1 liquid 
tip dendrite tip 
s solid 
w, e west and east control volume 

interfaces. 

Superscripts 
o old value 
* value at solid-liquid interface. 

temperature) such that solidification proceeds unidi- 
rectionally from bottom to top. At an instant in time, 
in this process, three transient regions can be ident- 
ified: solid, solid+liquid (mushy zone), and liquid. 
During the solidification, solute is rejected in the 
mushy region and can be subsequently redistributed 
by fluid flow. Since, the current system is both ther- 
mally and solutally stable, this fluid flow is driven by 
solidification shrinkage alone. The solute redis- 
tributed in this manner results in solute-rich and sol- 
ute-poor regions in the finally solidified casting, a 
phenomenon referred to as inverse segregation [10]. 

Assumptions 
A comprehensive analysis of the inverse segregation 

system requires coupled solution of heat and mass 
transfer equations describing the transport of heat and 
solute. In developing appropriate transport equations 
and an associated numerical model, the following 
basic assumptions will be used : 

(1) the domain is one-dimensional, defined by 
0 < x < Xb, where Xb is the length of the (macro- 
porosity free) domain on complete solidification ; 

(2) mass transport in the solid phase by diffusion 
is neglected; this is typically three or more orders 
of magnitude smaller than the mass diffusion in the 
liquid ; 

(3) the solid phase is stationary ; 
(4) in the phase diagram the liquids slope m~ and 

the partition coefficient k0 are assumed to be con- 
stants ; 

(5) equilibrium conditions exist at the solid-liquid 
interface, i.e. 

and 

T= Tf-mrCr (1) 

C* = k0 C1 (2) 

where T is the temperature, C is the concentration, Tf 
is the fusion temperature of pure aluminum, C' is  the 
interface solid concentration and the subscripts s and 
1 stand for solid and liquid phases, respectively ; 

(6) the specific heats, cp, and cp,, and thermal con- 
ductivities, Ks and Kr, are constant within each phase, 
but discontinuous between the solid and liquid; 
further, the latent heat of fusion L and the liquid mass 
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diffusivity D~ are freed constants and are not functions 
of  temperature and concentration ; 

(7) due to the relatively rapid nature of heat and 
liquid mass diffusion, in a microscopic representative 
elemental averaging volume (REV) [15], the tem- 
perature T, the liquid concentration Cl, the liquid 
density Pl and the liquid velocity u~ are assumed to be 
constant. 

Governing equations 
The governing equations are derived from the gen- 

eral two-phase volume averaged equations for descri- 
bing transport phenomena during solidification, pre- 
sented by Ni and Beckermann [15]. In the current 
approach appropriate forms of the two-phase equa- 
tions are additively combined together resulting in the 
following governing equations : 

Energy 

a[pH] 
c~ t + V" (Pl UCp, T) + V" (pl uL) = V" ([K]VT) 

Species 

Mass 

(3) 

a[pc] 
~3t + V ' ( p l u C , ) = V ' ( p l g l D i V C i )  (4) 

a[p] 
~ T  + v .  (p, u) = 0. (5) 

In the above equations, the mixture density is 

fl [p] = p, da+g lp l  (6) 

the mixture enthalpy 

TII [pill  = cp~ p~do~+glp~cplT+glplL (7) 

the mixture solute density 

[pC] = p~C~ da+gl  Pl C1 (8) 

the mixture thermal conductivity 

[K] = g~K~ + g, K,  (9) 

and the 'system velocity' 

u = glul" (10) 

In addition, the temperature scale has been translated 
so that the eutectic temperature T~,t = 0. The pro- 
posed equations are valid throughout the solidi- 
fication. In the fully solid region the system velocity 
u = 0 and the inw,'rse segregation problem will reduce 
to that of diffusion controlled heat transfer. 

Treatment o f  the local scale 
The above governing equations are macroscopic 

equations valid at the scale of the process. Micro-scale 

effects are included, however, via the definition of 
the mixture terms in the REV. In writing down the 
definitions in equations (6)-(8), the so-called Scheil 
assumption is invoked, i.e., at the local scale of the 
REV, mass diffusion is complete in the liquid, but zero 
in the solid. An alternative local-scale assumption is 
the equilibrium lever assumption (complete mass 
diffusion throughout the REV). With such an assump- 
tion equations (6)-(8) become 

[P] = g~Ps+glPl (11) 

[pH] = gsp~cpT+glplCp, T + g l p l L  (12) 

and 

[pC] = g~PsCs + glPl  Ci . (13) 

Boundary conditions 
The boundary conditions are : 

at x = 0 ,  

u = 0  
g T  ~ C  1 

[ / q  ~ = hamb(Tamb -- TIx = o) ~ -  = 0 

(14) 

where ham b is the heat transfer coefficient and Tam b is 
the ambient temperature of the chill ; 
at x = Xb, 

~T ~C1 
& = p , u ~  ~ = 0  ~ - x  = 0 .  (15) 

The value Fb is the mass flow rate of liquid per unit 
area that enters the system to compensate for the 
shrinkage in 0 < x < Xb. Note that this mass flux will 
result in a convective heat flux and solutal mass flux 
at x = Xb of the form 

qh = Fb(Cp, TIx = xb + L) (16) 

and 

qc = FbC1 [~ = x~. (17) 

Correct application of these boundary conditions 
requires careful definition of the point x = Xb. 
Initially, before solidification commences, the liquid 
metal occupies a region 0 < x < Xm, where Xm is the 
height of  the mold cavity [Fig. 20)].  When sol- 
idification starts, the level of the liquid metal drops to 
feed the shrinkage, forming an air-liquid interface 
x = Xl [Fig. 2(b)]. When the dendrite tips reach 
x = XI [Fig. 2(c)] liquid can still be fed across x = Xb. 
From this point on, however, macroporosity forms in 
the region Xl < x < Xtip, where Xti p is the position of 
the dendrite tips. Solidification is completed when the 
rising eutectic front x = Xeut meets the dropping 
liquid-air front x = Xr In the current work the length 
of the domain, Xb, is chosen to coincide with this 
meeting point [Fig. 2(d)]. In this way, there will always 
be sufficient liquid in x > Xb to feed the shrinkage in 
0 < x ~< Xb. Conceptually, the region in x > Xb can 
be considered to play the role of a feeder (riser). Note 
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(a) (b) W e 

Fig. 3. Interior control volumes. 

(e) (d) 

Fig. 2. Definition of the domain length Xb. 

that with this boundary condition the mass in the 
solution domain, 0 < x < Xb, will increase during the 
solidification process. On using representative phase 
densities (Pl = 2438 kg m 3 and p~ = 2580 kg m-3), a 
reasonable approximation, used in this work, for the 
domain length is 2"8 = Xm(Pffps). 

A NUMERICAL SOLUTION APPROACH 

Discretisation details 
An explicit time integration of the governing equa- 

tions [equations (3)-(5)] on a node-centered uniform 
grid of n control volumes [16] leads to the following 
set of discrete equations : 

Heat transfer 

[pH]p = awT~v+aET~-apT~ + S (18) 

where 

At At 
a w = [ K ] w ~  a E = [ K ] ~  a e = a w + a E  

At 
S = [pH]~, + -~x (c°, (F° T~, -- F ° T~) + (F ° -- F°)L) 

Solute transfer 

[pC] = [pC]~,+ ~tx (F°C~p-F°C~  ) (19) 

Continuity 

Ax o 
ee = Fw + ~ ([p]a -- [p]p) (20) 

where the convective terms have been 'upwinded' 
assuming that the flow is towards the chill face. In the 
above equations 

with a similar definition for [K]w, 

F =  plu 

is the mass flow rate of liquid per unit area, the super- 
script o represents old values, the subscripts w and e 
represent the west and east faces of control volume P, 
and the subscripts W and E denote the nodes to the 
west and east of node P (see Fig. 3). Further, values 
for the nodal temperature Tn÷ ~ and nodal liquid con- 
centration (Cl)~.l are evaluated via linear extra- 
polation. 

Solution algorithm 
(1) With the T, C1 and Ffield values at the previous 

time step, the mixture enthalpy [pH] and mixture 
solute density [pC] are determined explicitly from 
equations (18) and (19). 

(2) Then, using equations (1), (2), (7) and (8), the 
temperature T, the liquid fraction 91 and the liquid 
concentration C~, fields are 'extracted' from the cal- 
culated [pH] and [pC] fields (see Appendix 1). 

(3) With the gl field values from step 2, the density 
field p is evaluated via equation (6). 

(4) Finally, using the current and previous values 
of the density field, the flow field to be used in the next 
time step is determined from equation (20). 

An important component in the solver is the 
inclusion of a eutectic reaction [14]. Briefly, when 
the eutectic point is reached on the phase diagram 
(T = Teut = 821.2 K, Cj = 33.2% for the aluminum- 
copper system), any remaining liquid isothermally 
transforms into two separate solid phases and par- 
titioning of the solute between the liquid and solid 
phase does not take place. In the proposed solution, 
algorithm inclusion of the eutectic reaction is carried 
out in step 2 ; details are given in Appendix 1. 

The objective of the model is calculation of the 
mixture concentration, i.e. [C] = [pC]/[p], profle in 
the fully solidified casting (see Fig. 1). Grid inde- 
pendent values for [C] are obtained with a mesh size 
of 100 nodes, and a time step of 0.9 times the explicit 
criteria limit ; unless otherwise stated these will be the 
default sizes used in this study. The typical com- 
putational requirement, to full solidification, is 5 rain 
on an IRIS Indigo R4000 workstation. 
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Table 1. Properties for the columnar dendritic A1-Cu alloy system 

1013 

Property Value Unit 

%, 900 J kg-1 K l 

Cp~ 1100 J kg l K-  1 
k{o 7: 0.172 -- 

Kl 100 W m -1 K -I 
K, 200 W m i K-  l 
L 3.95 x l0 s J kg -I 

Te~t 821,2 K 
T~ 933.2 K 

Ceut 33.2 wt% 
p~l:q 2358.5+21.685Ci +7.2914 x 10-2C~ -7.2351 x 10-4C~ kg m -3 
p~131 2564.7 + 1.4023C 1 kg m -3 

p~ut l l3]  3232.3 kg m -3 
peUt [131 3409 kg m -3 

C(, 4.1 wt% 
h~,,t 1684.21-4.3443t +0.00449561 fl [where t is time (s)] W m -2 K -l 
T~m~t 293 K 

T, 1020 K 
Xb O. 1323 m 

tChosen to match experimental cooling conditions reported by Kato and Cahoon [11]. 

A TEST PROBLEM 

As a test problem we will consider the a luminum-  
copper system modeled and experimentally inves- 
tigated by Kato and Cahoon [11]. The key data to 
this problem are given in Table 1. Note that : 

(1) the choice of hamb is made in order to closely 
match the predicted movements of the liquidus and 
solidus fronts with those of the experiments ; 

(2) the density variation with concentration, in 
both the solid and liquid phases, are obtained using 
the model proposed by Ganesan and Poirier [13]. 

VALIDATION 

The proposed model (which will be referred to as 
the full model in t]~e remainder of the text) and the 
associated solution approach is validated in three 
stages : 

(1) the heat transfer part of  the model is validated 
on comparison with the semi-analytical heat balance 
integral solution proposed by Voller [17] ; 

(2) the solution for species transfer and the solute- 
temperature coupling are validated on comparison 
with the analytical solution of Flemings and Nereo 
[7]; 

(3) finally, the one-dimensional model predictions 
are compared with the results from an independent 
two-dimensional fluid flow model [18], similar in 
nature to the model recently presented by Diao and 
Tsai [12]. 

Heat transfer 
If  the density is constant, e.g. p = 2580 kg m -3, 

then no inverse segregation occurs, and the governing 
equations model conduction-controlled solidification 

of a binary alloy (e.g. see Clyne [19]). On assuming 
that the solidification occurs in the domain 
0 ~< x ~< 0.2 m and that the temperature at x = 0 is 
fixed at 573 K, predictions for the movement  of the 
liquidus and eutectic fronts, obtained with the full 
model, can be compared with a semi-analytical heat 
balance integral solution [l 7]. The agreement between 
the model and semi-analytical predictions, shown in 
Fig. 4, is consistent with previous comparison studies 
[20] and hence confirms that the heat transfer dements  
in the full model are sound. 

Solute transfer and solute temperature coupling 
Following Flemings and Nereo [7], under  the con- 

ditions of (i) constant  densities in each phase, e.g. 
p, = 2580 kg m -3 and Pl = 2438 kg m -3, (ii) pre- 
scribed linear liquidus (dendritic tips) and eutectic 
front movements, e.g. 

Xtip = rain l[ 0.00041847t-0.00298688, Xb II (m) 

X~ut = 0.000269232t-0.025 (m) (21) 

0.15 

Liquidus 0 [] 0 

0.10 

0.05 

o "~ ~,~ ooooo Nurnericol 
- -  Heat Bal, Int, 

o- 0.00 
o s'o 16o i~o 260 

T ime ( s e c o n d s )  

Fig. 4. Comparison between semi-analytical [17] and full 
model predictions of the liquidus and eutectic front move- 

ments. 
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Fig. 5. Comparison between analytical [7] and full model 
predictions of the concentration profile. 

4.75 
- -  Full Model 

00000 Experiment 

?4.50 
~ o 
*~ 4.25 O ~  

o C,=4.1 
E . . . . . . . . . . .  E~ . . . . . .  
8 4.00 o 

o 
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Distance from the chill (meters) 

Fig. 7. Full model predictions of the concentration profile 
compared with experimental measurements [11]. 

and (iii) a linear liquid fraction between the eutectic 
and liquidus fronts (0-1), an analytical solution for 
calculating the mixture concentration at any specified 
point in the casting can be derived. Further, on cal- 
culating the liquid concentration and liquid fraction, 
this solution also allows for the calculation of the 
mixture enthalpy [pH] at any specified point. In par- 
ticular, the mixture enthalpy histories can be cal- 
culated at a set of n points corresponding to the con- 
trol volumes used in the numerical solution of the 
full inverse segregation model. The validity of the 
treatment of the solute transport and solute tem- 
perature coupling in an implementation of the full 
model can then be checked on overwriting the mixture 
enthalpy values calculated with equation (18) with 
those obtained from the analytical model. When this 
is done, the model and analytical predictions for the 
mixture concentration profile are in very close agree- 
ment, (Fig. 5). From this result it can be concluded 
that the solute treatment (heat and solute transport 
and the temperature-solute coupling) used in the full 
model is appropriate. 

Comparison with two-dimensional model results 
Recently Swaminathan [18] has developed an inde- 

pendent two-dimensional fluid flow model of inverse 
segregation, which is similar in nature to the model 
reported by Diao and Tsai [12]. Figure 6 compares 

4.75 

, •  4.50 

_~ 

4.25 

O 

o 
4,00 >= 

< 

3.75 

. . . .  2 - 0  Model 
- -  Full Model 

o.ooo o.o'25 o.o~o 0.o95 o.lbo o.i'~5 

Dis tance  f r o m  t h e  ch i l l  ( m e t e r s )  

Fig. 6. Comparison between two-dimensional model and 
full model predictions of the concentration profile when the 

dendrite tips reach Xb. 

predictions (inverse segregation profile at the point 
when the dendritic tips just reach x = Xb) obtained 
with the proposed model and the two-dimensional 
model [18]. The predictions are in close agreement, 
which indicates that : (i) the one-dimensional assump- 
tion used in developing the model is sound, and (ii) 
the solution method adopted is appropriate. 

INITIAL APPLICATION TO THE TEST PROBLEM 

Figure 7 shows predictions of the mixture con- 
centration obtained with the direct use of the full 
model using the data given in Table 1. These results 
predict the inverse segregation at the chill face, but 
deviate dramatically from the experimental results in 
the later regions of solidification ; notably there is a 
large 'turn up' (positive segregation) in the con- 
centration profile not seen in the experiments or the 
limiting analytical solution. Changing the model par- 
ameters, in particular cooling rate, density and 
domain length "~b, has very little effect on the shape 
of the predicted concentration profile ; i.e. the solute 
turn up at the end persists. This result is somewhat 
puzzling, especially when one considers that the solute 
transport equation is essentially identical to the initial 
equations used in deriving the analytical inverse seg- 
regation model [7]. Furthermore, in the limiting case 
of prescribed linear front movements and a linear 
liquid fraction profile, the results from the full model 
are in close agreement with the analytical solution and 
experiments (Fig. 5). This leads us to believe that, 
despite the excellent agreement with experimental 
measurements, the assumption of a linear liquid frac- 
tion that 'lies at the heart' of the analytical model may 
be invalid. Supporting evidence for this view point 
comes from two sources. In the first place, the full 
model, based on the transport equations (3)-(5), pre- 
dicts liquid fractions which are far from linear (Fig. 8) 
but consistent with liquid fraction profiles presented 
elsewhere in the literature [19]. In the second place, 
consider the predicted temperature profiles in the 
mushy region. Figure 8 compares the temperature 
profiles predicted by the full model and the analytical 
model, close to the half-way point in the solidification. 
From a practical point of view, the temperature profile 
predicted by the analytical model is not realizable in 



A model of inverse segregation 1015 

"o 
"5 cr 
L3 

1.0 

0.8 

0.6 

0,4 

0,2 

0.0 

- - - -  Full Model 
. . . .  AnalytieQI ~ l  

/ I 
/ I 

/ I 

/ i / / ~  
i I I ,, / ×J 

/ I 'Y  ! 
o.oo 035 oJo 

Distonce f rom the chill (meters) 

975 - 

92=J. _Uq~dus 

e75- 

"~ 826 - 

E 775- 
~- i - -  Full Model 

. . . .  Anolyticol 

72S- 
o.oo 0.65 o.b 

Distance from the chill (meters) 

Fig. 8. Comparison of analytical and full model predictions 
for (a) the liquid fraction distribution, and (b) the tem- 

perature profile. 

that it requires a very large discontinuity in the gradi- 
ent to be present at the eutectic front. 

THE ROLE OF MICROPOROSITY 

The results presented in Fig. 7 lead us to the con- 
clusion that important physics has been omitted from 
the initial derivation of the full model. A possible 
candidate in this respect is the effect of microporosity. 
Briefly, in aluminum-copper alloys, microporosity 
forms at low liquid fractions due to the combined 
effect of the 'choking' of the flow as the dendritic 
spaces narrow and. the precipitation of hydrogen [21- 
25]. The nature of porosity can be better understood 
on noting the following 'rules of thumb' obtained 
from the literature', [11, 21-31]: 

(1) in a well-degassed casting, microporosity does 
not form in the vicinity of the chill face [24] ; 

(2) the range of microporosity values (vol%) 
observed in aluminum alloys ranges between 0.1 and 
5% [23, 26, 27] ; 

(3) the microporosity increases as a function of 
distance from the chill [11, 26, 30] ; 

(4) the metallostatic head (the height of liquid 
metal in the feeder) affects the microporosity [23, 25, 
31]. 

The effect of microporosity on inverse segregation 
is to reduce the shrinkage feeding and thereby reduce 
the mass flow rate of solute towards the chill. In an ad 
hoc treatment involving the specification of a friction 
factor which restricts flowback, Kato and Cahoon [11] 
investigated the effects of microporosity on inverse 

segregation in equiaxed systems. Using an analytical 
model with the now suspect assumption of a linear 
liquid fraction, these authors showed that accounting 
for the microporosity in equiaxed systems does have 
a beneficial effect (when comparing with experiments). 
These authors claim, however, that the levels of 
microporosity that occur in columnar dendritic sys- 
tems (such as aluminum-copper alloys) are too small 
to have an effect. In the light of the non-physical 
features predicted by our inverse segregation model, 
we would like to re-investigate this point. 

Modeling microporosity formation in metal casting 
is a current and active field of research [23-31]. State- 
of-the-art models involve a detailed accounting of the 
coupling of the thermodynamics and fluid flow at 
the local scale of the mushy region. In addition, the 
majority of papers are directed at 'plate casting' geo- 
metries and many involve alloys other than alumi- 
num-copper. As such we feel that the inclusion of a 
microporosity model in the proposed inverse seg- 
regation model is beyond the scope of the current 
paper and, in order to account for the effects of 
microporosity, we propose to follow the friction factor 
approach previously used by Kato and Cahoon [11] 
and by Murakami et al. [26]. In this approach, before 
the numerically calculated flow field values are used 
in the next time step, it is multiplied by a friction 
factor, f f ( x ,  t) < 1, i.e. at node P 

1~ = f f  F~ (22) 

where the superscript * denotes the modified value. 
Further, using continuity, the nodal microporosity 
field formed at each time step can be calculated as 

=k * o 
o r ( F e - F w ) A t + ( p P - p p ) A x l  (23) 

gpor  = gpr + L p l  A X  J '  

This microporosity distribution is easily incorporated 
into the inverse segregation model. The main modi- 
fication is that the solid volume fraction gs in equa- 
tions (6)-(8) is redefined as gs = (1 - g ,  -gpor). In the 
current work the choice of the friction factor is 

f f (xp,  t) = 1 --(1 -- Y) (1 _g,p)2 

where 

/r (-~-)-l/4XA ] 
Y = l - 0 . 8 . e x p  

L ~ p ~  
and xp is the node position. This can be considered to 
be a somewhat arbitrary choice ; note, however, that 
the resulting microporosity distribution, on complete 
solidification (Fig. 9), is 

(1) consistent with the microporosity rules of 
thumb presented above, and 

(2) similar in form and magnitude to the 
microporosity distribution measured and predicted by 
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Fig. 9. Predicted microporosity distribution. 

Zou and Doherty [32] in unidirectional castings of 
aluminum alloys. 

Further, use of this factor in the full model leads 
to the prediction of a concentration profile in close 
agreement with the experiment (Fig. 10). Hence, the 
inclusion of microporosity into the full model does 
have an effect on the qualitative behavior of the model 
predictions. This indicates that microporosity should 
be included in inverse segregation models of columnar 
dendritic systems. 

LOCAL BEHAVIOR 

The current inverse segregation model uses a Scheil 
treatment that assumes, at the local scale of the REV, 
complete liquid mass diffusion and zero solid mass 
diffusion. Results using the Scheil approach will be 
different from those based on the more commonly 
used equilibrium lever rule, which assumes complete 
diffusion at the local scale, in both the solid and the 
liquid [1, 2, 4, 12]. The principal reason for this is 
that, no matter what the initial solute concentration, 
a Scheil-based model will always predict a eutectic 
fraction, whereas at an initial solute concentrations 
below the solid eutectic concentration (5.65 wt% in 
the aluminum--copper system) a lever-based model 
will not. Since the eutectic reaction represents the 
major density change in the mushy region 
(p~,t = 3232kgm 3,flseut = 3409kgm-3), there 
should be a significant difference between Scheil- and 
lever-based models. This is confirmed on reference to 
the dashed line in Fig. 10, which shows the con- 
centration profile predicted by the full model using a 

Fig. 
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Predictions of concentration profiles when 
microporosity is included. 

lever assumption. It is clear that the presence of local- 
scale diffusion has a significant effect on inverse seg- 
regation. 

CONCLUSIONS AND DISCUSSION 

Our original intention in studying inverse seg- 
regation models was to develop a test bed where we 
could develop a micro-macro model that could 
account for non-equilibrium effects (in particular solid 
solute diffusion in the mushy zone). We felt that the 
experimentally validated one-dimensional analytical 
models [6, 7] reported in the literature were more 
than adequate for describing the essential features of 
inverse segregation. Our rationale for developing a 
numerical model based on the governing transport 
equations was motivated by the need to provide a 
framework into which the micro-model describing the 
local-scale diffusion of solute [33, 34] could easily be 
fitted. Problems arose in this approach, however, 
when it was found that the predictions from the model 
based on the governing transport equations did not 
match the available experimental results or the ana- 
lytical solution. This was a point that we felt deserved 
careful study in order to resolve or at least explain the 
reasons for the discrepancy. The major findings from 
this study are : 

(1) in two limiting cases, results obtained from a 
numerical model, based on the governing transport 
equations (3)-(5), agree with the available analytical 
solutions ; 

(2) the validity of the underlying assumption of a 
linear liquid fraction profile used in analytical inverse 
segregation models has been called into question ; 

(3) the qualitative nature of the full model pre- 
dictions can be dramatically improved on introducing 
a microporosity treatment ; small realistic amounts of 
microporosity have a large effect on the nature of the 
full model predictions ; 

(4) extreme treatments of the local-scale mass 
diffusion (i.e. microsegregation) have a marked effect 
on the inverse segregation results. 

The last two points indicate that a complete model 
of inverse segregation will require appropriate treat- 
ments of (i) the microporosity formation, and (if) 
the local-scale mass diffusion. Investigation of these 
points will be the objective of future studies. 
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APPENDIX 1 

Calculation ofT,  Cl and glfields 
Assuming constant phase densities, equations (1), (2), (7) 

and (8) can be combined into two non-linear equations in T 
and gt : 

[,oH] = algj +a2T+a3gj T (AI) 

where 

a, = plL a2 = psCp,(1 --gpor) a3 = plcp,--p~cp~ (A2) 

and 

where 

[pC] = bL +b2gl +b3T+b4gl T (A3) 

~'g° /~*k T \ / s C d / ~ , s  0 f ~  o o 

P l--P*ko _ 

p*ko o o 
b3=  - ( ~ ) ( g p o ~ - g p o ~ + g , )  

b4 = - (P' - p~*k~ (A4) 
\ m, /" 

For a given prescription of the mieroporosity, equations 
(A1) and (A3) can be solved using Newton's method, and 
C~ obtained using equation (1). Important points to note 
are" 

(1) When a lever assumption is used, the T, C~ and gl are 
extracted from equations (12) and (13). In this case, the 
resulting non-linear equations will have the same form as 
equations (A1) and (A3) with the coefficients of equation 
(A3) given by 
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b, = ( ~ ) ( 1 - - , q p o r )  

b3 = - ( ' °~L  °)  (1-9por ) 

(A5) 

(2) In cases where no microporosity forms, gpor is set to 
zero. 

(3) A non-constant phase density can be treated by suc- 
cessive substitution in the Newton's  solver. 

(4) On convergence, the T, g] and C] fields are subjected 
to the following conditions to reset their values to the correct 
value if they lie outside the phase change range or the eutectic 
reaction is occurring : 

(i) if (T > Tliq) then 

Reset: CI = Co gt = 1 Pl = Pi and 

T = [ [pH] --Pl L] (A6) 
L plCp, J 

(ii) if (C] > Co~t) then 

Reset: C~ =C¢ut T = T e u t = 0  Ps=P~Ut p~ =p~Ut 

and 

{[pH]] (A7) 
"q] = \ p l L ]  

(iii) If  (qt ~< 0) then 

Reset: Cl = C ~  la gl = 0  Ps=P°ld 

\ p,cps / " 

Note that  steps (i), (ii) and (iii) are performed in the order 
shown and that step (ii) accounts for the eutectic formation. 


